Hong Kong Remote Sensing Symposium

Hong Kong, 26 July 2018

YS Yam Senior Environmental Protection Officer Environmental Protection Department 任日成 高級環境保護主任 環境保護署

Remote Sensing Measurement -Current Technology and Future Development 遙測現今技術及未來發展

YS Yam Senior Environmental Protection Officer Environmental Protection Department 任日成 高級環境保護主任 環境保護署

Acknowledgement

of the support by Mr. Jackson Chan of Green Emission Environmental Consultant Ltd (GEEC) by providing remote sensing data and algorithm for analysis presented

感謝

Green Emission Environmental Consultant Ltd (GEEC) 陳國豐先生提 供遙測數據及算法用作是次數據分析

- Review current measurement technique and limitations
 - 現有技術的限制
- Illustration of real world remote sensing measurement challenges

- 現實中遙測的挑戰

- Developments for higher precision and accuracy
 一向更高精准度的發展
- Way forward

Remote Sensing Measurement – Issues 遙測問題

• Accuracy in real world affected by gas flow behind vehicle

- 車尾後的氣流影響數據

- Need higher NOx precision for dirty screen of Euro 4 or above petrol/LPG vehicles and for diesel
 - 歐4及較新汽油/石油氣、柴油車等抓高排 車需更精確量度氮氧化物

How Accurate is Remote Sensing? 遙測的準確性

- Hong Kong EPD deploys Dual Sensor 雙遙測儀器 setup such that 2 measurements are about 1 second apart
- Matched data shows some scattering已配對的數據見到有分散

How Accurate is Remote Sensing?

遙測的準確性

- However, emission profiles from both scopes agree on large scale data set, i.e., individual emission data is transient
 - 兩組大廢氣數據形態相同 個別數據是<mark>瞬態</mark>
- Analyzed over 4 million data for vehicle dynamic effect (speed and acceleration) on the instantaneous variations of the emission level
 - 分析4百萬數據,研究速度、加速度對瞬時廢氣的影響

See site selection and data QC at the end

Effect of Speed and Acceleration on Remote Sensing Measurement

- Over 4 million data from 2011-2017
- Average out the emission variation between vehicles均 化不同車輛的廢氣 差異
- Group by speed, acceleration and fuel type with at least 1,000 point in each grid每矩陣點最少 1000點
- Speed is a prominent factor on emission level車速對廢氣數 值有明顯影響

Effect of Speed and Acceleration on Remote Sensing Measurement 車輛速度/加速度對遙測的影響

Effect of Speed and Acceleration on Remote Sensing Measurement

NOx Stand Deviation vs Mean over Speed/Accel Matrix 車速/加速度矩陣點內的標準差vs平均值

- Variance of emission within each grid point of speed/accel
- 加減速矩陣點內廢 氣的差異
- Mean values grow with variances
- 平均值隨差異增加
- Diesel has lower variance with the same mean NOx level
- 同一平均值時柴油 車的廢氣差異較低

• Gas is measured by RS even at hard deceleration – the exhaust gas is dragged by the vacuum pocket behind vehicle

車輛廢氣被車輛後面的真空範圍吸引,故在猛烈減速時仍量到廢氣

• Gas IR/UV absorbance will vary due to turbulence - varying pressure and temperature at localize vortexes inside the vacuum pocket

在亂流內不同空間點的壓力及溫度有差異,氣體在紅外、紫外光吸收值會不同

- Measurements at high speed site may cause higher variance diesel vehicle have less variance due to large exhaust plume from the un-throttled engine thereby lowering the turbulence effect 監測點車速較高會有較高的數據差異,柴油車排氣量高,受影響較低
- Important to check sites and RS equipment for variance in data set for better site selection and data QC

重點是要查證檢測點及儀器差異的程度

- Vacuum is created behind a moving vehicle, generally higher with speed
- 行車時車後方會產生負壓,並隋 速度增高
- Exhaust gas is dragged along RS still measure gas even at vehicle deceleration
- 廢氣會被真空吸住,故減速時廢 氣仍會存在

Frequency Distribution of RS Signal 遙測訊號頻率分佈

Bench vs Tailpipe 枱式 vs 排氣喉

Little high frequency signal in bench test vs the measurement directly over the exhaust of a van driven on dynamometer. Higher frequency spectrum may vary gas absorbance. 枱式測試几乎沒有高頻訊號,功 率機測試則明顯,並會影響遙測 數值

New approaches in RS calibration and data collection 遙測較準與數據收集的新方式

New Remote Sensing Device

- Low profile to avoid measuring hot exhaust gas direct
 - 在較低位置量度,避免排氣喉直噴
- Open path dynamic calibration instead of gas cell type static calibration
 - 開放式動態較準
- Cater for real world turbulence
 - 照顧現實中的亂流問題
- Enhance NOx measurement precision
 - 改善氮氧化物測試精度

New RS Equipment Calibration 較準 and Real World Data 實際數據

Real World RS Measurement Affected by Turbulence Flow

- GEEC (RS manufacturer) provided data for analysis
 由GEEC 提供數據用作分析
- Illustration of vehicle dynamics (speed and acceleration) effect on real world RS measurement
 - 車輛速度加速度影響現實遙測數值
- Measurement optical path already lower than vehicle exhaust to avoid measuring hot gas – gas absorbance is proportion to temperature to power 4

- 光線軌跡低於排氣喉, 避免高溫影響

• Signal processing applied to filter out data with high transient due to turbulence

- 數碼過濾亂流資料

- Multi points collected (say 80) during each RS measurement每一次遙測假設有80點數據
- Transient data filtered leaving only valid points in each RS measurement 有亂流的數據點會被過濾
- Number of valid points is much lower at high speed and deceleration where highest turbulence signal were found高速及减速度時大部份亂流數據點被濾去

- Non-linear signal change in CO2 and other gases resulting in incorrect gas ratios (1)
- 二氧化碳與其他氣體訊號變化不線性

• Non-linear signal change in CO2 and other gases resulting in incorrect gas ratios (2)

- Non-linear signal change in CO2 and other gases resulting in overall incorrect gas ratios (3)
- 整體而言,氮氧與二氧化碳比例較高

- Distribution of road NOx data become normal after removing low valid point data
- 除去低有效值的數據 · 改善不正常高的數值分佈

Percentile of NOx/CO2

- Open path calibration of RS using calibration gas and pure CO2
- 使用標準氣及純二氧化碳·開放式較準
- Road data overlaid 藍色點為路邊量得廢氣數據
- NOx detection limit (3 Sigma) better than 100ppm氮氧的測知限值優於100ppm(3 Sigma方法)

- Gas concentrations vs RS signal tracking well when turbulence is dampen
- 減低廢氣亂流,遙測與分析儀數值走勢接近
- In free exhaust flow format, analyzer concentration does not follow RS signal gas flow in optical path is not uniform自由噴出時,兩者差別明顯

E

Way Forward

- Need to enhance the RS roadside data collection method better calibration and equipment audit using dynamic method
 - 更佳的遙測儀器動態標訂及考核方法·改善路邊遙測工作
- Site selection important to avoid high speed high deceleration data
 - 選擇遙測點十分重要,避免高速及急減速駕駛狀況
- Improved RS equipment can meet future enforcement target for NOx – for diesel, possibly in 100-200ppm NOx range over 10% CO2
 - 改善了的遙測儀器可達致未來NOx執法的精確度,對柴油車而言約在100-200ppm之間(10%二氧化碳水平時)
- Dual sensor a safeguard for diesel dirty screen considering the variation due to turbulence at low concentration level
 - 由於亂流及高精度要求等因素,雙遙測設備可減少執法時誤判

Thank you

Site Selection and Data QC

• Dual scope set up aids selecting suitable sites and QC of data collected

Site Selection and Data QC

- Bad data will be screened out during QC
 - Compare profiles between the scopes and site historic data
 - Problem with upstream scope, data rejected

Site Selection and Data QC

- Site with mild consistent slope and medium speed are suitable (most of our data are with speed below 50 kph)
- Higher the speed, bigger is the turbulence behind vehicle
- Beware of nearby vibration sources and consistent wind blows
- Bad sites will have different profiles between scopes and vary day to day
- AVOID bad sites